大学百知公众号
1、分式的乘除
(1)乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
用式子表示为$frac{a}{b}·frac{c}{d}=frac{a·c}{b·d}$。
(2)除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
用式子表示为$frac{a}{b}÷frac{c}{d}=frac{a}{b}·frac{d}{c}=frac{a·d}{b·c}$。
(3)乘方法则:一般地,当$n$是正整数时,
$left(displaystyle{}frac{a}{b}right)^n=$$begin{matrix} underbrace{displaystyle{}frac{a}{b}·frac{a}{b}·cdots·frac{a}{b} }n个 end{matrix}=$$begin{matrix}n个 overbrace{begin{matrix} underbrace{displaystyle{}frac{a·a·cdots·a}{b·b·cdots·b}} n个 end{matrix}} end{matrix}=$$displaystyle{}frac{a^n}{b^n}$,即$left(frac{a}{b}right)^n=frac{a^n}{b^n}$。
即分式乘方要把分子、分母分别乘方。
2、分式的加减
类似分数的加减,分式的加减法则是
(1)同分母分式相加减,分母不变,把分子相加减。
即:$frac{a}{c}±frac{b}{c}=frac{a±b}{c}$。
(2)异分母分式相加减,先通分,变为同分母的分式,再加减。
即:$frac{a}{b}±frac{c}{d}=frac{ad}{bd}±frac{bc}{bd}=frac{ad±bc}{bd}$。
$frac{x^2-1}{x+1}·frac{x^2-x}{x^2-2x+1}=$___
A.$x$ B.$2x$ C.$x^2$ D.$2x^2$
答案:A
解析:原式$=frac{(x+1)(x-1)}{x+1}·frac{x(x-1)}{(x-1)^2}=x$。故选A 。
本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 yyfuon@163.com 举报,一经查实,本站将立刻删除。
27
2023-04
一、分式的乘方和乘方法则1、分式的乘除(1)乘法法则:分式
27
2023-04
一、分式的乘方和乘方法则1、分式的乘除(1)乘法法则:分式
26
2023-04
一、分式的乘方和乘方法则1、分式的乘除(1)乘法法则:分式
26
2023-04
一、分式的乘方和乘方法则1、分式的乘除(1)乘法法则:分式
13
2023-04
一、分式的乘方和乘方法则1、分式的乘除(1)乘法法则:分式
11
2023-04
一、分式的乘方和乘方法则1、分式的乘除(1)乘法法则:分式
专科(高职),综合类,民办,现代学徒制试点院校
本科,综合类,公办,211工程,985工程,一流大学建设高校A类
本科,综合类,公办,211工程,985工程,一流大学建设高校A类
本科,综合类,公办,211工程,985工程,一流大学建设高校A类
本科,综合类,公办,211工程,985工程,一流大学建设高校A类
本科,综合类,公办,211工程,985工程,一流大学建设高校A类
本科,综合类,公办,211工程,985工程,一流大学建设高校A类
本科,理工类,公办,211工程,985工程,一流大学建设高校A类
本科,综合类,公办,211工程,985工程,一流大学建设高校A类
本科,综合类,公办,211工程,985工程,一流大学建设高校A类